Socket, Silicon, and SKUs

Cooper Lake Xeon Scalable ushers in a new socket, given that it is difficult to add in UPI links without adding additional pins. The new socket is known as LGA4189, for which there will be two variants: LGA4189-4 and LGA4189-5. When asked, Intel stated that Cooper Lake supports the LGA4189-5 socket, however when we asked an OEM about the difference between the sockets, we were told it comes down to the PCIe version.

LGA4189-5, for Cooper Lake, uses PCIe 3.0. LGA4189-4, which is for Ice Lake we were told, will be PCIe 4.0 Nonetheless, Intel obfuscates the difference by calling both of them ‘Socket P+’. It’s not clear if they will be interchangeable, given that technically PCIe 4.0 can work in PCIe 3.0 mode, and a PCIe 3.0 chip can work in a PCIe 4.0 board at PCIe 3.0 speeds, but it will come down to how the UPI links are distributed, and any other differences.

We've since been told that the design of the socket is meant to make sure that Ice Lake Xeon processors should not be placed in Cooper Lake systems, however Cooper Lake processors will be enabled in systems built for Ice Lake.

We’re unsure if that means that LGA4189 / Socket P+ will be a single generation socket or not. Sapphire Rapids, mean to be the next generation Xeon Scalable, is also set for 2nd gen Optane support, which could imply a DDR4 arrangement. If Sapphire Rapids supports CXL, then that’s a PCIe 5.0 technology. There’s going to be a flurry of change within Intel’s Xeon ecosystem it seems.

On the silicon side, Intel has decided to not disclose the die configurations for Cooper Lake. In previous generations of Xeon and Xeon Scalable, Intel would happily publish that it used three different die sizes at the silicon level to separate up the core count distribution. For Cooper Lake however, we were told that ‘we are not disclosing this information’.

I quipped that this is a new level of secrecy from Intel.

Given that Cooper Lake will be offered in variants from 16 to 28 cores, and is built on Intel’s 14nm class process (14+++?), we can at least conclude there is a ’28 core XCC’ variant. Usually on these things the L3 cache counts are a good indicator of something smaller is going to be part of the manufacturing regime, however each processor sticks to the 1.375 MB of L3 cache per core configuration.

This leads us onto the actual processors being launched. Intel is only launching Platinum 8300, Gold 6300, and Gold 5300 versions of Cooper Lake, given that its distribution is limited to four socket systems or greater, and to high scale OEMs only. TDPs start at 150-165 W for the 16-24 core parts, moving up to 205-250 W for the 18-28 core parts. The power increases come from a combination of slight frequency bumps, higher memory speed support, and double the UPI links.

Intel 3rd Gen Xeon Scalable
Cooper Lake 4P/8P
AnandTech Cores Base
Freq
1T
Turbo
DDR4
1DPC
DDR4
2DPC
DDR4
TiB
TDP
W
4P
8P
Intel
SST
Price
Xeon Platinum 8300
8380HL 28C 2900 4300 3200 2933 4.5 250 8P No $13012
8380H 28C 2900 4300 3200 2933 1.125 250 8P No $10009
8376HL 28C 2600 4300 3200 2933 4.5 205 8P No $11722
8376H 28C 2600 4300 3200 2933 1.12 205 8P No $8719
8354H 18C 3100 4300 3200 2933 1.12 205 8P No $3500
8353H 18C 2500 3800 3200 2933 1.12 150 8P No $3003
Xeon Gold 6300
6348H 24C 2300 4200 - 2933 1.12 165 4P No $2700
6328HL 16C 2800 4300 - 2933 4.5 165 4P Yes $4779
6328H 16C 2800 4300 - 2933 1.12 165 4P Yes $1776
Xeon Gold 5300
5320H 20C 2400 4200 - 2933 1.12 150 4P Yes $1555
5318H 18C 2500 3800 - 2933 1.12 150 4P No $1273
All CPUs have Hyperthreading

Quite honestly, Intel's naming scheme is getting more difficult to follow. Every generation of Xeon Scalable becomes a tangled mess of feature separation.

No prices are attached to any of the Cooper Lake processors from our briefings, but Intel did publish them in its price document. We can compare the top SKUs from the previous generations, as well as against AMD's best.

Intel Xeon 8x80 Compare
Xeon
8180M
Xeon
8280L
Xeon
8380HL
AnandTech EPYC
7H12
Skylake Cascade Cooper Platform Rome
14nm 14+ nm 14++ nm? Node 7nm + 14nm
$13011 $13012 $13012 Price ~$8500
28 C 28 C 28 C Cores 64 C
2500 MHz 2700 MHz 2900 MHz Base 2600 MHz
3800 MHz 4000 MHz 4300 MHz 1T Turbo 3300 MHz
6 x 2666 6 x 2933 6 x 3200 DDR4 8 x 3200
1.5 TiB DDR4 4.5 TiB Optane 4.5 TiB Optane Max Mem 4 TiB DDR4
205 W 205 W 250 W TDP 280 W
1P to 8P 1P to 8P 1P to 8P Sockets 1P, 2P
3 x 10.4 GT/s 3 x 10.4 GT/s 6 x 10.4 GT/s UPI/IF 64 x PCIe 4.0
3.0 x48 3.0 x48 3.0 x48 PCIe 4.0 x128
AVX-512
F/CD/BW/DQ
AVX-512
F/CD/BW/DQ
+ VNNI
AVX-512
F/CD/BW/DQ
+ VNNI
+BF16
AVX AVX2

The new processor improves on base frequency by +200 MHz and turbo frequency by +300 MHz, but it does have that extra 45 W TDP.

Compared to AMD’s Rome processors, the most obvious advantages to Intel are in frequency socket support, the range of vector extensions supported, and also memory capacity if we bundle in Optane. AMD’s wins are in has core counts, price, interconnect, PCIe count, and memory bandwidth. However, the design of Intel’s Cooper Lake with BF16 support is ultimately for customers who weren’t looking at AMD for those workloads.

We should also point out that these SKUs are the only ones Intel is making public. As explained in previous presentations, more than 50% of Intel's Xeon sales are actually custom versions of these, with different frequency / L3 cache / TDP variations that the big customers are prepared to pay for. In Intel's briefing, some of the performance numbers given by its customers are based on that silicon, e.g. 'Alibaba Customized SKU'. We never tend to hear about these, unfortunately.

Platform

As hinted above, Intel is still supporting PCIe 3.0 with Cooper Lake, with 48 lanes per CPU. The topology will also reuse Intel’s C620 series chipsets, providing 20 more lanes of PCIe 3.0 as well as USB 3.0 and SATA. 

Intel did not go into items such as VROC support or improvements for this generation, so we expect support for those to be similar to Cascade Lake.

Intel Launches Cooper Lake: 3rd Generation Xeon Scalable for 4P/8P Servers Performance and Deployments
POST A COMMENT

99 Comments

View All Comments

  • Deicidium369 - Thursday, June 18, 2020 - link

    Not in the case of BFloat they don't. Stick to desktops. Reply
  • AlexDaum - Friday, June 19, 2020 - link

    AVX-512 is great for performance, but it requires good programmers to make use of it, since it is no easy task creating an AVX optimised codepath. Reply
  • Deicidium369 - Saturday, June 20, 2020 - link

    All programming needs good programmers... most of the organizations that will have a use for ZVX will be able to draw upto existing libraries to integrate into a custom program... Reply
  • eek2121 - Thursday, June 18, 2020 - link

    It will be interesting if Milan supports bfloat16 as well. Unless AMD segregates enterprise chips (they will at some point), it would mean that bfloat16 trickles down to desktop chips. Reply
  • Deicidium369 - Saturday, June 20, 2020 - link

    Well Intel comes out with a feature, and then AMD copies it - so pretty sure bfloat is coming to AMD and AVX-512... Reply
  • Spunjji - Friday, June 19, 2020 - link

    There's no such thing as a "low priced" 4S Xeon system, though. The processors are expensive and so are the servers you put them into.

    That's been AMD's pitch the whole time - consolidate more cores into fewer sockets for a lower cost of ownership. If you want to do DL/ML you put in accelerators for those jobs, which again, will be cheaper than trying to reach the same performance with a Xeon.

    Intel are trying to find niches for their CPUs to occupy, but those niches are better occupied by products that cater to them specifically.
    Reply
  • Deicidium369 - Saturday, June 20, 2020 - link

    most of Cooper Lake will be for hyper scalers - not just, but most. Reply
  • Deicidium369 - Thursday, June 18, 2020 - link

    Smokes them in number shipped, market adoption, market share and revenues. From a business standpoint that is all that matters Reply
  • schujj07 - Thursday, June 18, 2020 - link

    That seems to be the only retort that you ever have for Intel. What you fail to realize is that given time those numbers will change if Intel continues to falter. Ice Lake is very late and when it comes out will be competing against 3rd Gen Epyc. We already know from laptops that Zen 2 competes quite well with Ice Lake on a performance side. We also know that Ice Lake has had frequency problems and has high power draw relative to Zen 2. Those things don't bode well for it in the data center. We already are seeing more companies moving to Epyc, especially those that have CTOs/CIOs that don't follow the Intel only mantra. In the enterprise world the tables are turning for Intel, much the same way it did for IBM years ago. It used to be that "no one was ever fired for buying IBM" now it is "no one was ever fired for buying Intel." That first statement eventually died and was replaced by the 2nd, and the 2nd is starting to die as well. Reply
  • AlexDaum - Friday, June 19, 2020 - link

    The main advantage of the Intel Xeons over Epyc is AVX-512 Support, which can have a large performance impact in some Software that can make use of it Reply

Log in

Don't have an account? Sign up now